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ABSTRACT
Patients with functional disabilities o�en require assistance to per-
form basic everyday activities, such as bathing, dressing, and ge�ing
into/out of bed. �ese activities typically require the direct care
worker (DCW) to transfer (li� & move) the patient from one lo-
cation to another. �ese patient transfers are a common cause of
injury to health care workers. In fact, depending on the job site, on
average a staggering 4% of DCWs are injured every year. Following
proper li�ing and transfer procedures can dramatically reduce the
risk of injury. �is research demonstrates that data collected from
motion tracking systems, combined with computational analysis
can detect risky patient transfer behavior. Testing of the system
occurred as part of an exploratory study in an assisted living facility.
Two common types of transfers were tested: transfers from bed
to shower chair, and transfers from shower chair to wheelchair.
�ese scenarios were tested on two types of patients, one that was
completely disabled, and one that was partially disabled. Twomajor
results were determined from this study: (1) risky patient transfer
behavior is common in the assisted living facility, and (2) this be-
havior can be adequately detected via wearable motion tracking
sensors. �e longer term research goal is to extend these prelimi-
nary results to construct a fully wearable motion tracking system
that can be used as a tool to reinforce proper li�ing and transfer
protocols to reduce work-related injuries among DCWs.
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1 INTRODUCTION
In 2014, DCWs employed by nursing and residential care facilities
owned by state governments experienced the second highest inci-
dence rate (7.9%) of nonfatal occupational injury and illness. Most
commonly (61%) from injuries related to the li�ing, repositioning
or transfer of care residents [5]. Only workers in rendering and
meat byproduct processing owned by private industry had a higher
rate (8.3%) of injury [6].

In addition to the obvious detrimental impact to the DCW and
patient, the collateral damage of work-related injuries a�ects home
care organizations, the health care system and the �nancial com-
munity. For the worker and the home care organizations, injuries
induce worker shortages and high turnover, in turn introducing
recruitment and retention problems. Although workers’ compen-
sation provides medical care, rehabilitation, and cash bene�ts for
workers who are injured on the job or who contract work-related
illnesses, studies have consistently concluded that various systems-
including the US Bureau of Labor Statistics and state workers’ com-
pensation programs undercount workplace injuries and illnesses
up to about 61% [3, 7], suggesting that work-related injuries are
vastly under-recognized.

�e costs associated with work-related injuries are high. For
example, data published by the National Academy of Social Insur-
ance indicate that in 2010, state and federal workers’ compensation
programs paid $57.5 billion in bene�ts. Workers’ compensation
costs to employers were $71.3 billion in 2010; these costs include
premium costs and deductibles for insured employers plus bene�ts
paid and administrative costs for self-insured employers.

Previous research suggests that proper training and reinforce-
ment of li�ing techniques and body mechanics are the most impor-
tant factors to reduce injuries. For example, work by Nelson and
Baptiste [4] states that, “the chasm between current practice and
scienti�c evidence is huge, when assessing interventions to prevent
or minimize the risks associated with patient handling.” In other
words, it is known that certain interventions and procedures can be
e�ective in injury reduction, but current real-world practice does
not match what is known to be e�ective procedure. �erefore, it is
highly likely that proper training, monitoring and reinforcement
are the critical elements needed to substantially reduce injury. To
be e�ective, frequent and timely feedback to the DCW is critical in
correcting improper behavior [11, 12].

Motion tracking has also been applied in medical se�ings rang-
ing from automated fall detection [8] to gait analysis [10]. Motion
tracking has also been commonly used for medical rehabilitation
by providing frequent monitoring of patient movement and identi-
fying appropiate corrections [11, 12]. However, to the best of the
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authors’ knowledge, there has not been any signi�cant published
work that leverages full body motion tracking data to automatically
assess injury risk for li�ing and patient transfers. �is provides
an opportunity to �ll some important gaps in the research, most
notably by building a system that identi�es and tracks the most
important risk metrics, and testing the e�ectiveness of the system
in a real-world environment.

To summarize, the research contributions include:

• Identi�cation of the important motions and behaviors that
increases the risk of injury during a patient transfer

• Description of motion tracking system for detecting risky
behavior. To allow others to more easily extend and repli-
cate this research, the source code and testing data is re-
leased on GitHub under an open-source creative commons
license.

• Prototype system was tested with di�erent workers (low
vs. high experience levels), patients (partially assisted vs.
totally dependent) and transfer se�ings (bed-to-chair and
chair-to-chair).

• Preliminary results that indicate that improper transfer
techniques and body mechanics are commonplace, based
on initial results from small exploratory study.

Since this work focuses on the feasibility of a wearable motion
capture system to assess injury risk, background onmotion tracking
technology is provided in the next section.

2 MOTION TRACKING PRIOR ART
�is section provides a high level overview of the di�erent op-
tions available for motion tracking. We will review the three most
common approaches for collecting full body motion tracking data:
(1) visual markers, (2) high resolutions cameras, and (3) wearable
sensors. Additional details and approaches for collecting motion
tracking data can be found in work by Zhou and Hu [11].

Visual Markers: �ere are a few di�erent types of visual
system with di�erent limitations. One approach is to put visual
markers on the individual being tracked. �ese visual markers make
it easier to detect certain key parts of the body. Since the position
of the markers is derived from video analysis, this approach has
an advantage over active sensors, in that it does not require any
wireless data transmission. However, visual marker methods have
a major limitation, since they are unable to detect rotated joints or
overlapped body parts [9]. �is limitation makes these methods
unusable in an environment where the line-of-sight between the
camera and the markers is obstructed. For these reasons, a visual
marker data collection approach lacks the necessary accuracy and
reliability to be a suitable solution for this study.

High Resolution Cameras: Visual motion capture does not
speci�cally require the use of wearable markers. It can also be
collected using multiple high resolution cameras and computer al-
gorithms that analyze the video and render a 3Dmodel. Advantages
of this approach is that it does not require anything to be worn,
which thereby reduces the time and burden for the trackee. How-
ever, the two primary disadvantages of this approach are (1) having
placement of video feeds in multiple prespectives and (2) intensive
computation for rendering the model and reducing error [2]. �e in-
frastructure requirements associated with this approach (signi�cant

computing power and camera placement) makes it an undesirable
approach for this study.

Wearable Sensors: �e advantages of accuracy and reliability
of data acquisition outweighs the disadvantages of extra expense
and burden of requiring active sensors. �erefore, for this study, we
choose to use a non-visual system using wearable sensors. �ese
wearable on-body sensors require strategic placement on major
joints (e.g. elbows and knees) and body parts (e.g. head, hands
and feet). Although, a variety of approaches exist in the literature,
most sensors track relative position and orientation. More speci�-
cally, the easiest to use and most cost e�cient sensors for full-body
motion detection are inertial sensors such as accelerometers and
gyroscopes [11]. Wireless data transmission allows for motion cap-
ture in near real time to a receiver. �e receiver can be located
nearby, potentially integrated into the same wearable system worn
by the individual being tracked. Additional details on how the data
was collected for this study are provided in the next section.

3 DATA COLLECTION
In this study, we collected data both using the wearable sensors
and 3D video. Both forms of data collection are shown in Figure 1.
�e video feed was not used for automated motion tracking, but
instead used to manually check the accuracy of the motion tracking
data. Instead of using a simple video feed with time referencing,
we used depth mapping which provides a coarse 3D model using
Microso� Kinect System. �e Kinect system built a rough reference
video feed that only shows gross details, while making subjects in
the video unidenti�able.

In total, 17 wearable sensors on each participant in order to track
the major body movements. Sensors were placed on the forehead(1),
pelvis(1), shoulders(2), upper arms(2), forearms(2), hands(2), upper
legs(2), lower legs(2), feet(2) and one sensor on the back (1) near
the T8 vertebrate. All sensors were Xsens sensors, which uses a
wireless system so that study subjects can move freely in the real
world while movements are captured in a 3D virtual world. �e
resulting motion tracking data represented in an avatar using 21
points, as some of the points are interpolated based on the 17 sensor
readings. �e data was collected over a period of �ve days in an
assisted living facility located near Albany, New York. �e amount
of time spent on each transfer (including pu�ing on and taking o�
sensors) was approximately twenty to thirty minutes. �e results
in this study are exploratory due to the small sample size (seven
DCWs, one gold standard for a total of 32 transfers). �is is a major
avenue for future work identi�ed in Section 6.1.

Data was collected from 7 home health aids that are employed
at the assisted living facility (n=7). One individual was used to
represent the gold standard on proper transfer techniques. �is
individual is a licensed physical therapist who has a Doctorate
in physical therapy and more than 15 years of experience in the
�eld. Each participant completed a total of 4 transfers. Each par-
ticipant completed a minimum of 2 transfers per patient. Each
transfer was performed with two patients with di�erent levels of
functional disability. Two di�erent types of patients were used in
this study: partially dependent and completely dependent. �e par-
tially dependent individual could somewhat assist in the transfer
tasks. �e total dependent patient could not assist in the transfer,
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Figure 1: Data collection showing data from 3D video and
wearable sensors.

in this case a mannequin was used to represent a total dependent
patient. For each patient, 2 transfers were tracked: bed-to-chair
and chair-to-chair.

4 INJURY RISK METRICS
Proper li�ing and transfers (carrying) techniques have been ex-
tensively studied in the literature. Common in the bio-mechanical
evaluation of di�erent li�ing and carrying techniques are four main
features (shown below). Adoption of these guidelines appears, in
general, to minimize the stresses on the disc, vertebra, muscles and
ligaments of the low back and thus reduce the risk of injury [1].
�e list below de�nes the four metrics that are used in this study
to de�ne lower risk vs. higher risk transfers (Figure 2). �is list
does not include other important individual metrics that are im-
portant for accessing injury risk (such as age, weight and height).
�ese metrics will be reviewed and incorporated in our model of
injury risk in subsequent work. Results of data collected from these
metrics are described in more detail in Section 5.

Figure 2A - Detecting Wide Support Base: Sensors placed
on each foot allow computing the support base. �is support base
is the distance the feet are positioned from each other when li�ing
or lowering the patient. As shown in Figure 2A the individual with
a lower injury risk has legs spread wide and is preparing to lower
himself into a squa�ing position. �e high injury risk individual
has a narrow support base, which is less stable and is likely to cause
the worker to lean forward causing unnecessary large forces to be
applied to the back when li�ing.

Figure 2B - Detecting Squat: Squa�ing was fairly easily mea-
sured by computing the distance of the pelvis to the �oor. In Fig-
ure 2B, shows two individuals that are in a squa�ing position. A
proper squat reduces injury risk, since the li�ing force is applied
using legs and not the back.

Figure 2C -DetectingGoodPosture (Upright Stance): Mea-
suring good posture has twometrics: maintaining an upright stance
and avoiding twisting the spine. Detecting the upright stance was
de�ned in this study by the amount of lower back bending from
a perfect upright position (Calculation shown in Figure 3). In Fig-
ure 2C, you can see two examples, a low injury risk where the
individual keeps the back mostly upright, and a higher injury risk
where the individual bends forward. We measure the amount of
bending compared to a perfect upright position of the L5 and T8

Figure 2: Low vs. high risk motions for each metric.

vertebrate. �e L5 and T8 vertebrate were chosen, since lower back
injuries are the most common type of DCW injury.

Figure 2D - Detecting Good Posture (Avoid Spine Twist):
To detect spine twist, we observe the position of two line segments
based on the le� & right hip, and the le� and right shoulders. As
shown in Figure 2D, we can use the control points that de�ne the
shoulders and the hips to generate two line segments. Twisting
of the shoulders relative to the hips is associated with a higher
injury risk. Figure 4 shows how to compute the degree of spine
twisting. �e shoulder line segment is de�ned by two points, the
le� shoulder SL and the right shoulder SR . Similarly, the hip line
segment is de�ned by two points the le� hip HL and the right
hip HR . For each line segment, the midpoint is calculated (Smid
and Hmid ). �e midpoints are used to correct the positions of the
shoulder and hip, in order to calculate the degree of spine twist. In
particular, a translation occurs to move the shoulder line segment
midpoint to be equal to the position of the hip midpoint. At this
point, it’s a simple calculation to measure the spine twist angle.
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Figure 3: Upright stancemetric is the angle of the lower back
(L5-T8 vertebrate) compared a perfect upright position.

Figure 4: Spine twist metric is the angle between the hips
and the shoulders.

5 RESULTS
�is section documents the results from our exploratory study that
took place over the course of 5 days in an assisted living facility.
�ese results provide useful insights and opportunities for future
work which are described in Section 6.1. Of particular interest in
this section is the comparison of the results of the DCWs to the
gold standard. Please recall that the gold standard is the highly
experienced physical therapist with a Doctorate in physical therapy
and over 15 years experience. �e DCWs and the gold standard
are compared based on di�erent types of patients (partially able to
assist in the transfer / totally dependent) and two di�erent types of
transfers (bed-to-chair / chair-to-chair). �e units are in meters for
the support base and squat metrics, and in degrees for the upright
stance and spine twist metrics. A lower value indicates a lower
injury risk, except for the wide support base metrics.

It’s important to understand how the values in this section are
calculated. As an example one of the metrics (spine twist) over a
complete transfer is shown in Figure 5. Note that the transfer is
broken out into 5 discrete steps. Injury is most likely to occur during
the stages where weight is being li�ed or carried (i.e. the stages: li�,
transfer, stand-sit). �erefore, we are speci�cally focused on those
three stages, since that de�nes the time period where increased
forces are being placed on the workers’ spine and lower back. �e
graph shows a particularly large and risky spine twist as the worker
lowers the patient from a standing position to a si�ing position. In
other words, the work violated the “good posture” requirement for
a safe li� and is therefore at a higher risk for injury. �antitatively,
this metric is assigned a very high value of 73 degrees, since that is
the maximum degree of spine twisting during the li�, transfer and
stand-sit stages.

In the overview table (Table 1), the gold standard is shown to have
consistently be�er metrics, which indicate patient transfers that
have a lower injury risk. �is overview table aggregates results from
both types of patients (totally & partially dependent). �e numbers
are averages, using 28 DCW transfers and 4 gold standard transfers.
Recall from the previous section that a lower number indicates

Table 1: Overall

Metric To / From DCWs Gold Di�

Support Base Bed-to-Chair 0.40m 0.83m -0.43m
Support Base Chair-to-Chair 0.37m 0.65m -0.28m
Squat Bed-to-Chair 0.80m 0.53m -0.27m
Squat Chair-to-Chair 0.84m 0.73m -0.11m
Upright Stance Bed-to-Chair 55.95° 55.79° -0.20°
Upright Stance Chair-to-Chair 50.83° 45.19° -5.64°
Spine Twist Bed-to-Chair 40.84° 29.53° -11.31°
Spine Twist Chair-to-Chair 40.67° 21.22° -19.45°

Table 2: Partially Dependent

Metric To / From DCWs Gold Di�
Support Base Bed-to-Chair 0.42m 1.00m -0.58m
Support Base Chair-to-Chair 0.38m 0.55m -0.22m
Squat Bed-to-Chair 0.75m 0.37m -0.38m
Squat Chair-to-Chair 0.83m 0.69m -0.14m
Upright Stance Bed-to-Chair 55.17° 67.87° +12.70°
Upright Stance Chair-to-Chair 52.68° 40.45° -12.23°
Spine Twist Bed-to-Chair 41.01° 42.65° +1.64°
Spine Twist Chair-to-Chair 49.67° 18.29° -31.38°

Table 3: Totally Dependent

Metric To / From DCWs Gold Di�
Support Base Bed-to-Chair 0.38m 0.66m -0.27m
Support Base Chair-to-Chair 0.36m 0.76m -0.40m
Squat Bed-to-Chair 0.85m 0.69m -0.16m
Squat Chair-to-Chair 0.85m 0.76m -0.09m
Upright Stance Bed-to-Chair 56.7° 43.70° -13.03°
Upright Stance Chair-to-Chair 49.28° 49.92° +0.63°
Spine Twist Bed-to-Chair 40.67° 16.51° -24.16°
Spine Twist Chair-to-Chair 33.17° 24.16° -9.01°

reduced risk behavior for all metrics, except for support base. �e
most striking di�erent between the DCWs and the gold standard
are the wide support base and spine twist metrics (highlighted in
Table 1). �e least di�erence was in the maintaining an upright
stance where there was li�le di�erence between the two groups. A
sizable di�erence is noted in the “squat” metrics, showing that the
gold standard was more likely to li� with legs rather then his back.

Tables 2 & 3 break out the results based on the type of patient.
Table 2 depicts the results of a partially dependent patient, while
table 3 shows the results of a totally dependent patient. For almost
all the metrics across both tables, the gold standard demonstrated
a signi�cantly reduced injury risk compared to the DCWs. �ese
results indicate that unsafe patient li�ing and transfer behavior is
common in the assisted living facility.
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Figure 5: �e amount of spine twist during all stages of
patient transfer. �e worker in this scenario signi�cantly
twisted their spine while lowering the patient into a chair.

6 DISCUSSION
6.1 Limitations & Future Work
�e study was developed to determine the feasibility of detecting
risky li�ing and transfer behaviors and to determine requirements
for building a wearable system. Based on our initial results, several
exciting and important areas of future work have been identi�ed
(shown below).

• Sample Size: Results in this study are exploratory and
have a small sample size (seven DCWs, one gold standard
worker and a total of 32 transfers). A larger sample will
make more conclusive claims.

• Completely Automated System: Development of an
algorithm that takes the risk metrics identi�ed in this study,
along with patient information (e.g. age, sex, height, and
weight) and computes a single estimate of the injury risk.

• Generalizable Solution: �e approach described in this
study was built and tested for the speci�c purpose of de-
tecting injury risk during patient transfers. However, it is
the authors’ belief that the approach is generalizable and
can be applied in almost any situation in which a person is
li�ing objects.

• Detection of Li�ing/Transfer Stages: Automatic de-
tection of li�ing and transfer stages, which might require
integration with weight (load sensors) to identify when a
worker is carrying signi�cant weight.

Our future work seeks to address the challenges above, as we
strive towards development and testing of a wearable system for
detecting injury risk alongside development of injury prevention
procedures.

6.2 Open Source Code
Python source code, sample test data and additional technical doc-
umentation are available under GitHub. Other researchers are
encouraged to extend this work, suggest enhancements and/or con-
tribute to the source code with additional features and so�ware
�xes. To encourage maximum use of this work, this source code is
released under the Creative Commons license.

7 CONCLUSIONS
Direct care workers are injured at astonishingly high rates. �e
majority of these injuries are back injuries that result during patient

li�ing or transfers. �ese injuries result in higher worker turnover,
increase healthcare costs, and jeopardize the health and safety of
both the workers and patients. Wearable technology has matured
to the point where it is feasible to mount sensors to automatically
detect improper li�ing and patient transfer techniques. �is study
gathered initial results on the feasibility and usefulness of a wear-
able motion tracking system for alerting workers and supervisors
when workers are risking injury based on li�ing and transfer move-
ments. Initial results of this exploratory study indicate that workers
are o�en engaging in unsafe practices, which were captured by
motion tracking sensors. �e preliminary evidence is encouraging
and indicates that a wearable motion tracking system could be an
e�ective new tool in injury prevention.
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