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ABSTRACT 
Recent development1of wearable sensor technologies have made it 
possible to capture concurrent data streams for ambient 
environment and instantaneous physiological stress response at a 
fine granularity. Characterizing the delay in physiological stress 
response time to each environment stimulus is as important as 
capturing the magnitude of the effect. In this paper, we discuss 
and evaluate a new regularization-based statistical  method to 
determine the ideal lagged effect of five environmental factors—
carbon dioxide, temperature, relative humidity, atmospheric 
pressure and noise levels on instantaneous stress response. Using 
this method, we infer that the first four environment variables 
have a cumulative lagged effect, of approximately 60 minutes, on 
stress response whereas noise level has an instantaneous effect on 
stress response. The proposed transformations to inputs result in 
models with better fit and predictive performance. This study not 
only informs the field of environment-wellbeing research about 
the cumulative lagged effects of the specified environmental 
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factors, but also proposes a new method for determining optimal 
feature transformation in similar smart health studies.   
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1 INTRODUCTION 
With rapid development of sensor technologies and the internet of 
things, the scope of smart health applications has considerably 
widened. Understanding the effects of indoor environment on 
individual wellbeing in office workplaces is one such application 
that has gained importance recently [7, 21]. Environment-
wellbeing studies can now be conducted by measuring 
instantaneous effects of an environment of interest on observable 
health artifacts, instead of traditional experience surveys and 
controlled experiments that suffer from problems of internal and 
external validity [4]. Environmental factors such as ambient noise, 
temperature, air quality and humidity can be measured in fixed 
(indoor or outdoor) sensors as well as mobile (wearable) sensors in 
real time. Simultaneously, heart rate, sleep, activity, cortisol 
monitors and one click mobile surveys can measure individual 
physiological and psychological wellbeing accurately. Modeling 
the environment wellbeing relationship at minute-level 
granularity has become possible due to such smart sensors, thus 
enabling researchers to ask more complex questions.  

A cumulative lagged effect is a special case of functional 
transformations of the input (e.g., lags, logarithms, exponential), 
commonly encountered in smart health applications that have 
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multilevel streaming (sensor) data. We therefore propose a new 
method for determining optimal feature transformation for 
multilevel streaming data in this study. This method selects one 
among 𝑘 transformations of an input, based on its weighted sum 
of penalized coefficients over grouped data. It is a regularization-
based ranking method consisting of three steps: (a) fitting an 
ensemble of lasso models (b) generating features importance score 
as a weighted sum of lasso coefficients, and (c) selecting the 
feature transformation with highest score. 

We apply this method on real data used to model effects of 
ambient environment quality factors—CO2, noise level, 
temperature, atmospheric pressure and relative humidity on 
physiological stress. Our method determines that ambient noise 
has an instantaneous effect and environmental factors—
temperature, relative humidity, pressure and CO2 have a 
cumulative lagged effect of one hour on physiological stress of an 
individual. Predictive performance of regression models fitted with 
the proposed input transformations are compared with the 
performance of models with other input sets. Models with inputs 
following the proposed cumulative lagged effects are observed to 
perform better than other models. 

The remainder of this paper is structured as follows. In section 
2, we discuss related work in methods to determine optimal 
cumulative lagged effects. In section 3, we describe the proposed 
regularization based ranking method to identify optimal feature 
transformations in multilevel data. Sections 4 and 5 compare and 
evaluate the validity of the method. Section 6 presents a discussion 
of the findings along with study limitations. Conclusion and areas 
for future work are in Section 7. 

2 RELATED WORK 
There are several studies that analyze effects of environment 
factors such as temperature, air quality and noise level on 
individual wellbeing [5, 10, 14, 20]. Previous studies either do not 
model instantaneous effects measured at less than a one-hour 
granularity [2, 14] or have assumed instantaneous effects [11, 15]. 
MacNaughton et al. [9] address the problem of cumulative lagged 
effect identification for CO2 on heart rate by comparing the 
estimated coefficients and p-values for CO2 with different 
cumulative lags. They suggest a cumulative effect of an hour on 
heart rate variability and other health outcomes.  To the best of 
our knowledge, there is no prior theory or evidence regarding the 
presence or absence of cumulative lagged effects of other 
environmental factors such as temperature, humidity or ambient 
noise.  

The approach used by MacNaughton et al. is heuristic and 
depends on the analyst’s subjective inputs while inspecting the 
coefficients. On the other hand, traditional stepwise feature 
selection procedures are ridden with challenges such as sensitivity 
to changes in data and low external validity [6]. The problem of 
selecting the right cumulative lag for an input is different from 
feature selection and hence, standard feature selection methods 
[22] cannot be directly used. We therefore require a validated 
method that can be applied across multilevel data scenarios such 
as the ones used in previous environment-wellbeing studies. With 

such a method, we can then identify cumulative lagged effects for 
smart wearable systems (SWS) that measure vital signs such as 
body/skin temperature, heart rate variability, arterial blood 
pressure, respiration and activity [3]. 

3 METHODOLOGY 
We propose a new regularization based ranking method called 
mixed lasso to identify optimal feature transformations in 
multilevel data. In this section, we first formulate cumulative 
lagged effects as set of candidate feature transformations, and then 
describe the mixed lasso method as a three-step process for 
optimal feature transformation identification.       

A cumulative lagged effect of an input is the effect of sum of 
the values of inputs measured from current state to a finite 
interval 𝑝. The cumulative lag is also known as area under the 
curve (AUC) [1] or window of exposure [16] effect. The problem 
of identification of the right cumulative lagged effect of an input in 
multilevel streaming data can be presented as a feature 
engineering problem. That is, we generate functional 
transformations of an input that are cumulative lagged effects with 
intervals 𝐾 =  {𝑘𝑖  |𝑘𝑖 ⊆ [0, 𝑝]}. The K cumulative lags can be 
represented as the set  {𝑥1

′ =  𝑥𝑡 , 𝑥2
′ =  𝑥𝑡 + 𝑥𝑥−1 + ⋯ +

 𝑥𝑥−𝑘1
, 𝑥3

′ =  𝑥𝑡 + 𝑥𝑥−1 + ⋯ + 𝑥𝑥−𝑘2
, … , 𝑥𝐾

′ =  𝑥𝑡 + 𝑥𝑥−1 +

⋯ + 𝑥𝑥−𝑘𝐾−1
 } . For the limiting case, p+1 cumulative lagged 

effects of the input 𝑥𝑡 are given by the set { 𝑥𝑡, 𝑥𝑡 + 𝑥𝑥−1, 𝑥𝑡 +

𝑥𝑥−1 +  𝑥𝑥−2, … , 𝑥𝑡 + 𝑥𝑥−1 + ⋯ + 𝑥𝑥−𝑝 } ; which is the 
distributed lag representations of finite lags 𝑘 ∈  {0,...,p}. For 
streaming data, the intervals 𝑘 are often interpretable multiples of 
temporal units, such as multiples of 15 minutes (e.g., instantaneous 
value of temperature, AUC of temperature for past 15 minutes, 
AUC of temperature for past 30 minutes, AUC of temperature for 
past 45 minutes and so on). 

Streaming datasets in smart health applications typically have 
a two-level structure of repeated measures of sensor information 
(level-1) across participants (level-2). For such a two-level data, we 
propose a three-step procedure to determine the optimal 
cumulative lag for each input. First, fit lasso-regularized linear 
regression model to each of the 𝑚 participants. Secondly, combine 
the coefficients using a weighted pooling strategy to get an overall 
importance score of each cumulative lagged effect with interval 𝑝 
for the input. The third step is to rank the cumulative lagged 
effects in decreasing order of their score and select the one with 
the highest score as the predictor in the model.  
Mathematically, we can represent the steps as follows:  

Step I: Fit lasso models for each of the 𝑀 group data 

𝐿𝑚 ∶  argmin
𝛽

{
1

2
∑ (𝑦𝑖

(𝑚)
 −  𝛽0 −  ∑ 𝑥′

𝑖𝑗
(𝑚)

𝑑

𝑗=1

𝛽𝑗)

2
𝑛

𝑖=1

+ 𝜆 ∑ |𝛽𝑗|

𝑑

𝑗=1

} 

(1) 
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The coefficients for each element in the feature subsets 

{𝑥1
’ , 𝑥2

’ , . . . , 𝑥𝑘
’  }

𝑟
⊆ 𝑋 for inputs 𝑟 ∈ 𝑅 is therefore determined for

each group 𝑚.  

Step II: Generate the feature importance score as a weighted sum 
of each lasso coefficient 

𝛽𝑗  =  
1

𝑛
 ∑ 𝛽𝑗

𝑚 𝑊𝑚
𝑀

𝑚=1
 (2) 

𝑊(𝑚) =  
𝑆(𝑚)

√𝐿 (𝑌̂(𝑚))

𝑆(𝑚) and 𝐿 (𝑌̂(𝑚)) are size and loss functions for linear 

model fit for group 𝑚 respectively.  
Step III: Determine the optimal feature corresponding to each 
input 𝑟 as 

maxxj
r⊂ X𝑟 βj

r (3) 

Step I is fitting standard lasso models for 𝑀 groups or clusters in 
the multilevel data. Here, we circumvent the need to account for 
within group dependence [18]. For multilevel data with more than 
2 levels, we propose an 𝑀 𝑥 𝑁 factoring approach (e.g., with four 
groups in level 2 and 10 groups in level 3, we can implement step 
one for 40 factored groups). In Step II, we propose the weights 
𝑊(𝑚) as a ratio of cardinality of each group 𝑆(𝑚) and square root 

of the loss function 𝐿 (𝑌̂(𝑚)) of the model for the corresponding 

group. This ensures that the 𝛽(𝑚) for model corresponding to 
group 𝑚 is penalized for smaller representation as well as inferior 
fit, compared to coefficients of models for other groups in the 
dataset. Step III simply selects the best feature from set of feasible 
cumulative lagged effects for input 𝑋𝑟, as the final step of the 
feature extraction process. 

4 EXPERIMENTAL EVALUATION 
We applied the mixed lasso method to determine cumulative 
lagged effects in a real data used to model effects of ambient 
environment quality factors—CO2, noise level, temperature, 
atmospheric pressure and relative humidity on physiological 
stress. The data was generated by a field experiment conducted as 
part of a multidisciplinary research program supported by the 
General Services Administration (GSA) to study the impact of the 
workplace environment on individual wellbeing. The experimental 
setup consisted of participants wearing two sensors for three days 
while carrying out their day-to-day activities: (a) A heart rate 
monitor and (b) A personal environment quality sensor-based 
device2. Two hundred and thirty-one participants across multiple 
locations participated in the experiment during July 2015 through 
November 2016. The data for this study was hierarchical, where 
participants are the secondary level of data abstraction. Short term 
RMSSD (Root mean square of successive differences), SDNN 
(Standard deviations of NN interval), normalized HF (normalized 
high frequency component) and LF/HF (low frequency to high 

2  Aclima, Inc. is the research partner that provides the fixed and mobile 
environmental sensor data. 

frequency ratio) measured at every 5 minutes are four heart rate 
variability (HRV) indicators that measure the instantaneous 
physiological stress response of individuals [8, 23]. HRV has been 
considered as a proxy measure for the wellbeing of a person, i.e., 
higher its value, higher the wellbeing of the subject [13, 14, 21]. 
One of the primary objectives of this study was to characterize the 
effects of ambient environment quality factors—CO2, noise level, 
temperature, atmospheric pressure and relative humidity on 
physiological stress. 

The input variables for investigation of cumulative lagged 
effects are temperature, noise level, CO2, relative humidity and 
pressure measured by the personal environment quality sensor-
based device. The outcome variables are SDNN, RMSSD, 
normalized HF and LF/HF which are heart rate variability 
measures of physiological stress response. Other covariates such 
as participant demographics (e.g., Body mass index (BMI), Age, 
Gender), temporal indicators (Time of day, Day of the week) and 
activity-level (actigraph measure that gauges movement of 
participants) are included in the model. After data integration, 
preprocessing and cleaning, our final dataset contained 
approximately 200,000 minutes of heart rate monitor and 
environment quality data streams. The dataset was randomly split 
into training and test datasets (75:25 split) for analysis. 

Different values of cumulative lags for each of the inputs were 
considered, e.g., every 5 minutes, every 10 minutes, every 15 
minutes, and so on. A spacing of 30 minutes was determined as 
optimal for interpretability and generalizability.  Three versions of 
each input (instantaneous value, 30-minute cumulative lag and 60-
minute cumulative lag) are presented in this study. Note: we 
analyzed higher granularities (e.g., 90-minute cumulative lag, 120-
minute cumulative lag), but our results did not change. 

We compared the performance of a model with the proposed 
feature set (denoted as Mixed lasso) with other models having 
following feature sets: (a) Only instantaneous inputs (b) Only 30 
minutes cumulative lagged inputs, (c) Only 60 minutes cumulative 
lagged inputs, (d) Instantaneous, 30 minutes and 60 minutes 
cumulative lagged versions of inputs (denoted as all cumulative 
lag) (e) Supervised stepwise feature selection using AIC (denoted 
as MinAIC). The fixed effects model was used as a baseline, 
denoting the performance when only fixed effects of 
instantaneous inputs are considered in the multilevel model. 

Table 1: Model fit comparison using Pseudo R Squared 
Pseudo R 
squared RMSSD SDNN 

Norm. 
HF 

LF/HF 

Fixed effects 
only (baseline) 

0.6724 0.6644 0.5152 0.4544 

Instantaneous 0.7736 0.6988 0.5968 0.4994 

30 mins 
cumulative lag 

0.7802 0.6936 0.5896 0.4971 

60 mins 
cumulative lag 

0.7883 0.6970 0.5938 0.4981 

All cumulative 
lag 

0.7734 0.6975 0.5987 0.5007 

MinAIC 0.7860 0.6970 0.5952 0.5042 

Mixed lasso 0.7856 0.6987 0.5995 0.5011 
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Table 2: Prediction accuracy comparison using RMSE 

RMSE RMSSD SDNN 
Norm. 

HF 
LF/HF 

Fixed effects 
only (baseline) 

8.5419 17.9597 9.1037 6.5198 

Instantaneous 7.6826 17.4308 8.6555 6.4416 

30 mins 
cumulative lag 

7.5697 17.4366 8.7345 6.4455 

60 mins 
cumulative lag 

7.5226 17.3872 8.7065 6.4509 

All cumulative 
lag 

7.6769 17.4307 8.6442 6.4414 

MinAIC 7.5293 17.4307 8.7071 6.4372 

Mixed lasso 7.5131 17.3448 8.6364 6.4420 

Table 3: Prediction accuracy comparison using MAE 

MAE RMSSD SDNN 
Norm. 

HF LF/HF 

Fixed effects 
only (baseline) 

5.8293 12.4376 6.3599 2.4439 

Instantaneous 5.1534 11.9572 6.0014 2.3441 

30 mins 
cumulative lag 

5.0853 11.9575 6.0631 2.3475 

60 mins 
cumulative lag 

5.0664 11.9049 6.0488 2.3437 

All cumulative 
lag 

5.1534 11.9535 5.9953 2.3424 

MinAIC 5.0610 11.9571 6.0387 2.3342 

Mixed lasso 5.0637 11.8837 6.0008 2.3348 

Table 4: Prediction accuracy comparison using MAPE 

MAPE RMSSD SDNN 
Norm. 

HF LF/HF 

Fixed effects 
only (baseline) 

25.12 24.30 38.11 168.79 

Instantaneous 21.79 23.17 35.83 167.01 

30 mins 
cumulative lag 

21.46 23.10 36.18 166.40 

60 mins 
cumulative lag 

21.39 22.97 36.12 166.23 

All cumulative 
lag 

21.80 23.17 35.88 166.86 

MinAIC 21.42 23.17 36.09 166.27 

Mixed lasso 21.37 22.92 35.79 166.15 

Hierarchical linear models (HLM) were fit for all the 
previously stated input feature-sets, for each of the four outcomes. 
We included the environmental inputs as fixed as well as random 
effects across participants [18]. Model fit was checked using 

pseudo R-Squared [12]. Predictive performance was compared 
using Root Mean Squared error (RMSE), Mean Absolute Error 
(MAE) and Mean Absolute Prediction Error (MAPE) on the test 
dataset.  

Using the mixed lasso method, 60 minutes cumulative lagged 
versions of for temperature, CO2, pressure, relative humidity and 
instantaneous version of noise level were identified as optimal 
feature representations for the environment factors across all four 
HRV outcomes (SDNN, RMSSD, norm HF and LF/HF).  

The model fit and prediction accuracy comparisons across 
models described in previous section are shown in tables: Table 1, 
Table 2  Table 3 and Table 4. The model fit and error estimates for 
best performing models are highlighted for reader convenience. 
Better model fit and prediction accuracy corresponds to a higher 
value in Table 1 and lower values in Table 2, Table 3 and Table 4 
respectively. We see from Table 1 that models fit using the 
proposed mixed lasso method do not over-fit, but the performance 
is at least second best in terms of prediction accuracy as seen in 
Table 2, Table 3 and Table 4. This shows that models with input 
feature-set derived using the mixed lasso method have best overall 
predictive performance, indicating that the intervals selected for 
cumulative lagged effects of each of the inputs are optimal. 

5 DISCUSSION 
The proposed regularization based ranking method for 
determining optimal input feature transformation in smart health 
applications has better prediction accuracy than existing 
approaches. It is robust in the presence of noise in data and avoids 
manual errors in inspection or stepwise methods. This study 
contributes to statistical method literature as well as to 
environment-wellbeing domain literature, by suggesting a 60-
minute cumulative lag effect for four out of the five inputs of 
interest.  

There are some limitations to this study based on assumptions 
made. We have focused on the problem of determination of 
optimal lagged effects of inputs over an outcome in a longitudinal 
setting, but do not delve into the problem of determining 
significance of the inputs themselves. However, our proposed 
approach can be used as a pre-processing step based on which 
subsequent analysis can determine the relative significance of each 
input in the model. A second limitation is the assumption of 
availability of continuous streaming data. Streaming data can often 
have missing values, e.g., removal or disconnection of sensors, 
values beyond sensor range, etc. [19]. In our work, we manually 
inspected such intervals and handled the missing values 
accordingly. However, the presence of discontinuity in streaming 
data can limit the possibility of assessing validity of larger 
cumulative lags. Hence, the set of candidate longitudinal 
transformations, such as cumulative lagged effects have to be 
determined based on available data. A third constraint on our 
approach is that it is applicable for multilevel data streams, and 
not designed to determine cumulative lagged effects in single-level 
longitudinal data applications (e.g., studying effect of alcohol 
consumption on brain activity in a single person over a time 
period). 
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In addition to the linear multilevel regression models, we also 
tested the feature extraction method using the RE-EM tree, a tree-
based multilevel model fitting data mining algorithm [17]. The 
models with all positive feature representations of inputs (full 
model) performed better than any other model, including the 
model fit using mixed lasso method. Hence, we conclude that our 
proposed mixed lasso method is more suitable for explanatory 
statistical modeling than tree-based predictive modeling. 

6 CONCLUSIONS 
Innovative methods of collecting recording artifacts in real-time 
using multiple mobile/wearable sensors have opened up 
unexplored channels of exploratory research in smart health 
applications. In this study, we show that modeling delay in output 
response is as important as capturing the magnitude of the effect 
of the corresponding input. We proposed a novel method for 
identifying the cumulative lagged effect for inputs in multilevel 
streaming data. It uses a regularization-based ranking approach to 
determine best set of features representing the environment 
factors. It is robust, efficient and provides better prediction 
accuracy for the given data.  

Our proposed method is validated and therefore the identified 
cumulative lagged effects are more reliable. The environment-
wellbeing study presented in this paper is just one of the several 
smart health applications which need to take into account 
cumulative lagged effects. Our work facilitates environment-
wellbeing research, by serving as a guideline for transforming 
variables such as, temperature, noise level, CO2, relative humidity 
and pressure into specific cumulative lagged versions, when 
analyzing heart rate variability.  

We presented the application of our method in identification 
of optimal cumulative lagged effects in the environment-wellbeing 
data. However, our approach is capable of addressing a wider set 
of problems of selecting one out of 𝑘 transformations of inputs of 
multilevel models, when there is little or no prior theory for the 
input to output functional relationship. With an increasing 
number of smart health applications, this method can prove useful 
to improve prediction performance of explanatory models as well 
as contribute to the literature pertaining to the domain of 
functional relationships. 

As part of future work, we plan to apply our method to 
identify optimal input transformation in other smart health 
problems. We also plan to build a software package implementing 
the mixed lasso method described in this study. 
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