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ABSTRACT 
Chronic Kidney Disease (CKD) is one of the deadliest diseases in 
the world, with 10% of the global population affected by the 
disease. Identifying subpopulations with characteristic disease 
progressions is important to find more efficient treatments for 
patients with this disease. The abundance of electronic health 
records (EHR) data can be used to find meaningful subtypes for 
CKD but comes with challenges during analysis, including 
irregular data sampling, and skewness in the data collected over 
time. In this paper, multiple regression techniques were used to 
fill in the missing estimated glomerular filtration rate (or eGFR – 
a key measure for kidney function) trajectory data, so it can be 
clustered effectively. Clustering is applied to the enhanced data 
to obtain six subtypes, which capture crucial trends in the 
disease progression of patients. Moreover, the characteristics of 
patients in each of the subtypes had minor differences from 
others. These characteristics demonstrate risk factors and 
positive lifestyles choices of patients with CKD, which can help 
develop new treatments for CKD. 
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1 INTRODUCTION 
Clinical Electronic Health Record (EHR) data is rapidly growing 
and has the potential to be a cost-effective and large-scale source 
for extracting deep phenotypes. However, the extraction of 
detailed disease and drug-related phenotype information hidden 
in clinical data is a challenging task.  

One large collection of EHR data is the DARTNet Chronic Kidney 
Disease (CKD) dataset [7]. CKD is well recognized as a rising 
problem in global health. According to the 2013 Global Burden 
of Disease study, there were approximately 956,000 deaths 
caused by CKD worldwide in 2013 [4]. Furthermore, CKD was 
ranked 19th in the top causes of global years of life lost in 2013. 
In the US, it is the 9th leading cause of death and impacts over 
20% of the US adult population [2].  

In this paper, we describe a methodology to identify precise 
disease subtypes for CKD, by clustering EHR data obtained from 
the DARTNet collection. Clustering EHR data is challenging due 
to the irregularity of lab tests and clinical observations. Time-
series clustering methods, however, require consistent time 
intervals between data points for all patients. We employ a 
statistical spline regression method to convert the irregularly 
sampled test results into a uniformly sampled time series. The 
imputed time series data is then used for clustering to identify 
the disease subtypes in the target population. We obtain six 
subtypes, which are then analyzed in terms of demographic 
characteristics, patient lifestyle, and co-existing conditions. 
While, there have been past studies that have used EHR for 
understanding CKD progression, the temporal aspects of eGFRs, 
a key indicator of CKD severity and CKD subtypes, has not been 
addressed previously [2,5].  

2 DATA 
The data comes from a collaboration of nine research networks, 
the DARTNet Institute. It stores data for approximately 12.5 
million patient visits per year and over 5 million patient lives, 
leading to approximately five billion data values [1,3]. The data 
is used to track patients over several years as a time series in 
terms of disease severity, physiological characteristics, and 
medications. 

One curated dataset that has been extracted from the larger data 
set, consists of 69,817 patients suffering from Chronic Kidney 
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Disease is used in this study. Table 1 summarizes the data 
elements in this set.   

Table 1: Data elements in the CKD dataset. 

 
The target variable for this study was the estimated Glomerular 
Filtration Rate (eGFR), which is a standard derived test value 
that measures a patient’s kidney function. The eGFR value is 
estimated from a clinical laboratory test that measures the 
creatinine level through a standard blood test. The eGFR rate 
estimates how much blood passes per minute through the 
glomeruli, which filter waste from the blood. It is standardized 
based on measurements of age, race, and gender through the 
following equation [7]: 

 

where Scr is the serum creatinine level obtained through the lab 
test. The constant 𝞳g is used to factor in gender information: 𝞳g 
= 0.742 for females and 𝞳g = 1 for males. The constant λr is used 
to account for ethnicity information: λr = 1.212 for African 
Americans and 1, otherwise.  

According to the National Kidney Foundation, the eGFR value 
for healthy individual’s ranges between 90-120. Patients 
suffering from Chronic Kidney Disease typically have an eGFR 
value below 60 for over 3 months. 

 

 

3 METHODS 
The first step was to validate and clean the data. Table 2 displays 
the exact criteria for the results to be considered valid. All values 
that were invalid were discarded before proceeding with the 
analysis.  

Three lab tests were used to predict the standardized GFR value 
for a patient with said test done on the same day.  

 Creatinine  
 GFR lab result for African Americans, and 
 GFR lab result  

If there was a creatinine test value and a standardized GFR value, 
available for the same day, the relationship between the points 
was used to create an inverse relationship between creatinine 
and GFR, which was then used to predict GFR when only a 
creatinine value was present.  Based on 437,719 pairs of 
creatinine and standardized GFR tests done on the same day, a 
relationship between   1/Creatinine and GFR was identified. The 
R2 value is the coefficient of determination and a measure of 
how well the regression line approximates the data (See Table 3). 
Figure 1 illustrates a patient’s GFR values over time. 
For applying the time-series clustering method, the observations 
for all patients must start and end on the same days and all of the 
points used for clustering must be an equal distance (time) apart. 
Based on the frequency of eGFR values over time available in the 
CKD data set, data was available for most patients between March 
14, 2005 and March 7th, 2012 (nearly 7 years). If there was no 
value before/on March 14, 2005 or after/on March 7th, 2012, a 
linear regression model was applied to extrapolate. The spline 
regression model was used to “fill” the values for days within 
consecutive observations to obtain data at 30-day sampling rate, 
starting from March, 2005. 

Patient Information Age, Gender, Race, Ethnicity 

Test Results Alanine Aminotransferase (ALT) 
Hemoglobin 
HDL Level 
LDL Level 
Triglycerides 
Aspartate Amino- 
transferase (AST) 
albumin/creatinine ratio 
HbA1c 
25 OH Vitamin D 
Serum Phosphorus 
intact PTH 
eGFR 
Creatinine 

Clinical Information All medications 
All diagnoses 
Total physician visits 

Physiological 
Measurements 

Blood pressure 
Weight 
Weight/BMI 

Table 2: Criteria for valid measurement. 

Value Valid Threshold 

Weight < 500 pounds 

Height < 99 inches 

Blood Pressure 10 -  300 mm Hg 

eGFR  < 300 mL/min/1.73 m2 

AST < 1000 IU/L 

Triglyceride < 3165 mg/dl 

Creatinine < 100 mg/dL 

ALT < 1000 IU/L 

Blood Glucose < 2656 mg/dl 
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Table 3: Coefficient of determination for the linear 
regression of each variable, where y = Standardized GFR 
and x = variable (test result value) 

Variable Coefficient of 
Determination 

Equation 

Inverse 
Creatinine 

0.67522 y = 56.8461x  + 5.4281 

African 
American GFR 

0.41475 y = 1.0309x + 0.2113 

GFR 0.68323 y = 0.7714x + 12.034 

 Figure 1: A sample patient’s GFR values over time (x-axis 
as Julian time and y-axis as finalgfr). The dots signify data 
points; blue and red lines denote spline interpolations 
with different smoothing characteristics. 

Next, the TSclust method in R was applied to create a dissimilarity 
matrix of the disease severity (eGFR). The Partitioning Around 
Medoids (PAM) [6] algorithm was used for clustering. The PAM 
algorithm partitions the dataset of n objects into k clusters, by 
minimizing the distance between points assigned to a cluster and a 
point evaluated as the center of the cluster (medoids] by creating a 
dissimilarity matrix. 

4 RESULTS AND DISCUSSION 
Six distinct subtypes were discovered from the Chronic Kidney 
Disease data set. Figure 2 shows the result of the six subtypes’ 
prototype trajectories found in the experiment. In fact, the found 
subtypes’ prototype trajectories coincide with existing knowledge 
about patient subgroups in CKD: 

 Subtype #1 indicates a group of patients whose kidney
function was stable, at a moderate level over the course of 5
years with an early fluctuation downward, then upwards, and
later kidney function stabilizes.

 Subtype #2 represents a set of patients who have a slow
decline in renal capability.

 Subtype #3 indicates a set of patients who have an increase in
kidney function early on, but then kidney function stagnated
at a lower level.

 Subtype #4 corresponds to the group of patients that yielded
a constant improvement in kidney function.

 Subtype #5 indicates a set of patients whose kidney function
originally decreased, but over time increased significantly.

 Subtype #6 coincides with a group of patients who had an
increase in kidney function in early stages, but had severe
damage in kidney function over time.

The characteristics associated with these six subtypes were further 
analyzed. The aim of this analysis was to find characteristics such 
as ALT, AST, HDL, Creatinine, LDL, triglyceride, and gender, and 
phenotypes associated with each subtype.  

Subtype 1: Alanine Aminotransferase (ALT) and Aspartate 
Aminotransferase (AST) values are average in comparison to the 
other subtypes, but there were outliers with ALT and AST values 
of more than 50. The HDL value was average in this subtype. The 
LDL value was average when compared to other subtypes. The 
triglyceride values in this subtype were similar to those in other 
subtypes, but there were a significant number of outlier patients 
with extremely high triglyceride values as well.  

Subtype 2: ALT and AST values were average in comparison to 
the other subtypes, but there were a significant number of outliers 
with ALT and AST values of more than 50. The HDL value was 
relatively higher in subtype 2 when compared to the other 
subtypes. The creatinine values in this subtype were comparable 
to the values in the other subtypes, and the triglyceride values in 
this subtype were similar to those in other subtypes. This subtype 
was 97% female and 3% male. 

Subtype 3: ALT and AST values were slightly lower in 
comparison to the other subtypes, but there were also outliers 
with ALT and AST values of more than 50. The HDL values were 
relatively lower in subtype 3 when compared to the other 
subtypes. The creatinine values in this subtype were comparable 
to the values in the other subtypes. The LDL value was average 
when compared to other subtypes. The triglyceride values in this 
subtype were significantly higher than triglyceride values in other 
subtypes. This subtype was 27% male and 73% female.  

Subtype 4: ALT and AST values were significantly higher in 
comparison to the other subtypes. The HDL value was average 
when compared to other subtypes. The creatinine values in this 
subtype were generally higher than those of other subtypes, and 
there were a significant number of outliers with even higher 
creatinine values in this subtype. The LDL value was average 
when compared to other subtypes. The triglyceride values in this 
subtype were similar to those in other subtypes. The male to 
female ratio in this subtype was about 50-50.  

Subtype 5: The HDL value was average in this subtype.  The 
creatinine values in this subtype were comparable to the values 
in the other subtypes. The LDL value was average when 
compared to other subtypes, and the triglyceride values in this 
subtype were similar to those in other subtypes. This subtype 
was 100% female. 

Session: Health Data Mining DH’17, July 2-5, 2017, London, United Kingdom

197



 

Subtype 1 

 

Subtype 2 

 

Subtype 3 

 

Subtype 4 

 

Subtype 5 

 
Subtype 6 

 

Figure 2: The graphs show disease severity trajectory for each derived subtypes (x-axis is Julian time and y-axis is finalgfr) 

 

 Subtype 6: The HDL value was significantly lower in subtype 2 
when compared to the other subtypes. The creatinine values in 
this subtype were also generally much higher than those of 
other subtypes. The LDL value was significantly higher when 
compared to other subtypes, and the triglyceride values in this 
subtype were slightly higher than triglyceride values in other 
subtypes. All of the subtypes except subtype 6 had more female 
patients than male. However, in this subtype it was 65% male to 
35% female. For instance, for subtype 5, the HDL values were 

average. The creatinine values in this subtype were comparable 
to the values in the other subtypes. The LDL value was average 
when compared to other subtypes, and the triglyceride values in 
this subtype were similar to those in other subtypes. 
Additionally, this subtype was 100% female. 

4.1 Analysis of Results 

By creating a trajectory for patient's eGFR values, a disease 
severity trajectory was created. Cohorts of similar severity 
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trajectory gave insights into the causality of such changes and 
led to risk factors. Of all of the lab results per subtype in only 
ALT, AST, HDL, Glucose, LDL, Triglycerides, and gender had a 
significant difference in value between subtypes, while birth 
year, blood glucose levels, blood pressure, UACR, and 
hemoglobin levels did not show significant trends. 

The ALT values were relatively higher in cluster 4. This could 
potentially show that high ALT levels coincide with a recovery 
from CKD.  

A similar conclusion can be drawn from the AST distribution by 
subtype. The AST values were higher than average in subtype 4, 
which shows a recovering trend from CKD, and the AST values 
were lower in subtypes 3 and 6, which had a trend towards 
deteriorating kidney function. High AST levels could indicate a 
recovery from CKD, while low AST levels indicate a 
deterioration in kidney function, or the progression of CKD.  

The only clear observation from the HDL graph was that 
subtype 6 had extremely low HDL levels for all patients, and 
these patients had a severe decline in kidney function.  

The creatinine levels by subtype showed that patients in Subtype 
5 had low creatinine levels while patients in subtype 6 had 
higher creatinine levels. This could indicate that patients that 
recovered from CKD had lower creatinine values while patients 
whose CKD progresses severely had high creatinine values.  

The LDL results by subtype showed that patients in Subtype 2 
and 6 had high LDL levels. Both Subtype 2 and 6 described 
patients with decreased kidney function over time, which could 
show that high LDL levels coincided with the progression of 
CKD.  

Triglyceride lab result values by subtype displayed that patients 
in subtypes 3 and 6 had higher Triglyceride levels than the other 
patients. Furthermore, subtypes 3 and 6 described patients with 
decreased kidney function over time, which indicates that high 
triglyceride levels were a risk factor for CKD. 

The gender distribution by subtype showed that there were 
more female patients in the subset than male patients. This could 
be because female patients were more likely to follow-up on 
doctor appointments and therefore were more likely to have 
over 20 non-null eGFR values. Given that the majority of 
patients were female in the subset taken into consideration, the 
subtypes with the most males, 4 and 6 both had upward 
trajectories and recovered from CKD. So, it was concluded that 
males were more likely to recover from CKD than females. 

A general profile of patient who recovered from CKD was: high 
ALT level, high AST level, low Creatinine level, and male, while 
a general profile of a patient whose CKD progresses was: Low 
AST level, low HDL level, high Creatinine level, high LDL level, 
and high triglyceride level. 

5 CONCLUSIONS 
Chronic Kidney Disease is the 9th leading cause of death in the 
US [4] with little understanding about the progression of the 
disease. Finding accurate and detailed phenotypes can lead to 
identification of medically relevant disease subtypes, which is a 
vital component of modern precision medicine, and application 
of the precision medicine philosophy can be extremely helpful in 
developing new treatments for patients with CKD.  In this paper, 
we presented a methodology to use EHR data records to extract 
patient clusters corresponding to potential disease subtypes. The 
irregular data sampling issue with EHR measurements was 
solved by using a regression model to impute the desired lab test 
value (e.g., eGFR) using other lab test results. The six subtypes 
identified through this analysis can be used to better understand 
phenotypes for CKD and combined with other patient 
information such as genomic surveys for developing better 
treatments.  
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