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ABSTRACT 

Internet-based monitoring of influenza-like illnesses (ILI) has 
become more common since its beginnings over a decade ago, 
both through estimates based on the number of searches for 
influenza-related terms (e.g., Google flu trends), or by means of 
participatory surveillance systems. The latter, often seen as ways 
of engaging people in matters of scientific and public health 
importance, gather a wealth of potentially valuable 
epidemiological information complementary to that obtained 
through the established disease surveillance networks and also 
usually absent from search-based web algorithms.  

We present a statistical analysis of the data from the Mexican 
monitoring website “Reporta” by which the risk factors linked to 
reporting of ILI symptoms as outcome among its participants are 
determined, and interpret these results based on current 
knowledge of the factors that influence transmission of infection 
resulting in disease. Besides standard factors associated with 
enhanced susceptibility to infection some novel behavioral factors 
linked to high risk were: (i) use of public transport; (ii) frequent 
contact with animals, and (iii) use of non-standard interventions, 
such as homeopathy. While close contact with large groups of 
people in public transportation is generally assumed to be  

 

 

 

 

 

 

important in disease spread, frequent contact with animals is not. 
Our results are consistent with previous observations that animals 
may serve as mobile fomites and hence increase the propensity to 
develop disease. We conclude that analysis of rich information 
sets from Internet-based systems may suggest novel ideas on 
disease spread that are worth following up with field research. 
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1 INTRODUCTION 

Seasonal epidemics of influenza are estimated to result in three to 
five million cases of severe illness each year, and between 
250,000 to 500,000 deaths [1]. Influenza viruses also have huge 
potential for emergent pandemics and are important from a basic 
research point of view, all of which makes them of fundamental 
public health interest. A reduction in the disease burden caused by 
influenza requires an understanding of the risk factors associated 
with transmission and symptom presentation for a given 
population, while taking interventions into account. The profiles 
of individuals at high risk of acquiring the infection and 
developing disease can help to decide where, when and whom to 
apply an intervention.  

In classical epidemiological modeling a common step is to neglect 
the heterogeneities (in contact, susceptibility, etc.) present in the 

Permission to make digital or hard copies of all or part of this work for personal 
or classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice 
and the full citation on the first page. Copyrights for components of this work 
owned by others than ACM must be honored. Abstracting with credit is 
permitted. To copy otherwise, or republish, to post on servers or to redistribute to 
lists, requires prior specific permission and/or a fee. Request permissions from 
Permissions@acm.org.  
DH '17, July 02-05, 2017, London, United Kingdom  
© 2017 Association for Computing Machinery.  
ACM ISBN 978-1-4503-5249-9/17/07…$15.00 
http://dx.doi.org/10.1145/3079452.3079471  

Session: Health Systems & Tools DH'17, July 2-5, 2017, London, United Kingdom

147



process. At the same time, a fundamental question is: When are 
these heterogeneities of critical importance and therefore must be 
taken into account? We will consider here the issue of how 
heterogeneity can impact disease dynamics by embedding it in the 
conceptual framework of risk analysis and studying which factors 
determine the risk of contracting the disease for an individual. 
Because the heterogeneities of disease propagation may be present 
in a large number of factors, the question arises of how to obtain 
data associated with them.  

Traditionally, the chief sources of epidemiological data have been 
public health authorities. Many countries have well-developed 
sentinel systems, whereby the dynamics of an epidemic is tracked 
by the number of visits to physicians of patients diagnosed with 
influenza-like illness (ILI) and, occasionally, confirmatory 
laboratory tests. However, the extent to which the number of 
doctor visits with ILI diagnosis is a good representation of 
underlying ILI incidence in the population is rarely known [2]. A 
variety of cultural, demographic and economic factors may 
influence whether a person consults a doctor when having ILI 
symptoms. On the other hand, an advantage of medical records is 
that they usually include patient information together with a 
diagnosis, and can be used to study risk factors. Other potential 
sources for such data have often been clinical studies, where the 
effect of one, or a small number, of risk factors is studied [3-5], 
though these are generally costly in both human and monetary 
resources.  

With the advent of the Internet, other sources of data have become 
available for tracking influenza epidemics [6-13]. A well known 
one is Google-flu trends [14], whereby frequencies of Internet 
searches for terms related to influenza are taken as a proxy for ILI 
incidence. These data have been shown to track sentinel data quite 
well [10, 14-18]. However, their correlation can decrease abruptly 
[19, 20], and they are far removed from obtaining data that links 
ILI incidence to individual traits, thus making an analysis of risk 
factors unfeasible.  

On the other hand, an alternative source of information that has 
become more popular recently is that of web-based “crowd-
sourced" or participatory systems [6, 13, 21, 22]. These have 
mostly been employed, thus far, to monitor ILI activity through 
users who voluntarily sign up and then report weekly on whether 
or not they exhibit ILI symptoms. The participants also input 
socio-demographic and lifestyle information upon registration. 
Unlike proxy-based systems akin to Google-flu, participatory 
surveillance systems (PSS) count the frequency of ILI symptoms 
reported by the participants. Although self-assessed, this tally is 
done at the individual level and, by linking it to the background 
information of each person, it can further our understanding of 
risk factors in relation to disease spread.  

Naturally, the potential utility of any of these different methods 
for giving epidemiological alerts or contributing to the 
understanding of risk factors depends on the geographical 
coverage and sheer numbers of volunteers involved, as well as 
any intrinsic underlying biases in the population being sampled. 
On the other hand, all data sources will be biased. In the case of 
sentinel systems, one bias is that they sample those who are 
economically able to go to a doctor and live close enough to him. 
Google-flu-like systems have a bias that comes from measuring 
interest in flu-like subjects as opposed to ILI incidence itself, and 
are restricted to Internet users. This last remark is also true for 
crowd-sourced data. Moreover, since the latter are based on 
voluntary participation, one may ask whether volunteers are a 
good representation of the general population, or whether they get 
sick more/less often, or over-represent a certain sector of the 

population, thus introducing other potential sources of bias. 
However, the analyses performed thus far show that voluntary-
based crowd-sourced data adequately track the beginning, peak 
and decay of ILI epidemics [21-24], and when complemented 
with other sources, their structure allows us to try and correct this 
bias by taking into account the socio-demographic factors that 
characterize our sample population. Moreover, PSS provide a way 
of incorporating changes in healthcare-seeking behaviour that 
then improve our estimates of disease incidence and severity [25]. 
We will therefore make the assumption that they are a useful 
information source for determining and understanding risk factors 
for influenza spread.  

Since our goal is to discover the traits associated to different 
degrees of risk of ILI, we must consider what causes the 
emergence of new cases in a population. Two main factors are 
necessary: coming into contact with the influenza virus, and 
developing the disease. All else being equal, the first factor 
depends on the number of contacts one has. The second factor 
depends chiefly on characteristics of the individual, such as 
immune response (itself dependent on a wide variety of factors, 
such as history of infection and immunization, nutrition, genetic 
background, presence of chronic conditions, etc.) and personal 
hygiene. This last group of factors ultimately defines the tendency 
to acquire the infection and develop disease, which we term - 
individual susceptibility. Thus, we will: (a) measure the 
associations between the background data and ILI presentation 
found in the Mexican website “Reporta”, (b) provide a 
“taxonomy" in which background data are classified as 
influencing the contact network or reflecting differences in 
susceptibility. Lastly, we will (c) interpret risk levels in terms of 
our proposed taxonomy. Our interpretation is then substantiated 
with the results of a refined assessment of risk and leads to 
hypotheses that may be tested in the lab or in the field. 

 

2 Methods 

2.1 Study Population 

The population for this study was participants of the crowd-
sourced flu-monitoring system “Reporta” (web site 
http://reporta.c3.org.mx/) which opened in Mexico just after the 
H1N1 sanitary emergency there in 2009. Such systems rely on 
direct, voluntary, weekly reporting of symptoms to produce an 
estimate of the prevalence of ILI among participants [21]. As 
such, the sample population is not necessarily representative of 
the full Mexican population, and so our conclusions apply only to 
the sample population considered and any extrapolation to a wider 
population is subject to considerations of sample 
representativeness. In the specific case of Reporta, its genesis 
within the National Autonomous University of Mexico resulted in 
a study population skewed towards age groups and occupations 
particularly associated with a university as can be seen in Figure 
1. However, the profile is not dissimilar to that of participants of 
other crowd-sourced systems [22]. 
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Figure 1. Age profile of Reporta participants in contrast to that of 
the general population in Mexico (INEGI). 
 

2.2 Ethical Considerations 

This research was approved by the Ethics Committee of the 
National Institute of Respiratory Diseases “Ismael Cossio 
Villegas” of the National Health Ministry of Mexico 
(INER/CEI/052/2013). Written, informed consent was obtained 
for the analysis of anonymous data. In order to register, 
participants must tick a box by which they give their consent for 
taking part in a scientific study on influenza epidemiology. The 
consent form details how their data will be used and states that 
their information will remain anonymous and confidential. It also 
explains how they may end their participation.  

 

2.3 Sample Size, Study Period and Outcome 
Measure 

We took into account data from N = 4,873 Reporta participants, a 
sample made up by those who registered, completed their 
background questionnaire and filled in one or more weekly 
surveys between the launching of the system in May 2009 and 
September 2011. This sample was chosen in order to focus on the 
epidemiology of the H1N1 strain, which was presumed to 
dominate influenza epidemiology at the time. The principal 
outcome measure was the occurrence of ILI in any participant 
over the study period. Our classification of a set of reported 
symptoms as indicative of an ILI follows the definition used by 
the Mexican Health Ministry (Secretaría de Salud or SSA), which 
requires that the patient present, at least, a fever (more than 38C) 
and either a cough, or throat pain. We focus on the class, C, of 
respondents who reported ILI symptoms at any time during the 
interval from the start of their participation to September 2011 
(P(C) = NC/N = 20.09%), where NC = 979. Just as with other 
Internet-based monitoring systems one can compare PSS-
based ILI incidence with official statistics [21-24] in order to 
determine the degree of correlation. In Figure 2 we show a 
comparison of ILI incidence among participants of Reporta 
against hospital discharge data. As can be observed, the 
tendencies are quite similar. 

 

 

2.4 REPORTA: Questionnaire and variables  

Participant data consist of their answers to: (i) a background 
questionnaire that is filled in immediately after registration, and 

 

Figure 2. Contrast of influenza-like illness among participants of 
Reporta and pneumonia discharges from hospitals. The time series 
portrayed in this graph show the weekly numbers of participants 
of Reporta with ILI symptoms who live in the Federal District of 
Mexico (D.F.) and those of pneumonia patients discharged from 
hospitals of the Health Ministry of D.F. 

 

(ii) weekly symptoms questionnaires. User ID numbers identify 
questionnaires that correspond to a single participant. The 
background questionnaire of Reporta consists of 21 questions 
covering a range of socio-demographic and lifestyle traits. The 
background questionnaire asks what is the approximate number of 
colds that participants have each year, with three possible answers 
in a drop-down menu: less than two, between two and five, more 
than five colds per year. Participants are also classified as 
belonging to a risk group when they are older than 65 or under 2, 
or if they reported having any chronic disease. Another question 
asks what the respondent does when falling ill (to which possible 
replies are “Visit the GP" or “Take what the pharmacist 
recommends", among other options in a list). It is also enquired 
whether the participant has frequent contact with a variety of 
animals from a list, or with “other" animals that do not appear 
specifically in it.  

An important issue for crowd-sourced systems is the frequency of 
participation, which we measure by considering the fraction of 
weekly questionnaires that each participant fills in, counted from 
the date in which the participant first registered in the system. 
Thus, a 50% participation rate could correspond to someone who 
has been in the system one month and filled in two reports, or 
someone who has been in the system two years and filled in 52 
reports. We note that well over 50% of participants completed 
more than 30% of their weekly questionnaires.  

 

2.5 Statistical Analysis  

We will consider the identification of risk factors, Xi, for the 
class, C = presence of ILI. As a classification problem we wish to 
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determine the relation between C and Xi through P(C|Xi). Hence, 
a natural statistical diagnostic is the binomial test  

ε(C | Xi) = NXi (P(C | Xi) - P(C)) /(NXiP(C)(1 - P(C)))1/2 

which determines the statistical significance of the relation 
between the class, C = presence of ILI, and the risk factors Xi, 
where NXi  is the number of participants with the risk factor Xi. 
We will also consider the odds ratio OR = 
[P(C|Xi)/P(C|Xi)]/[P(C|Xi)/P(C|Xi)], where C is the complement 
of C and Xi the complement of Xi.  

In this paper we concentrate on a univariate analysis. We also 
performed bivariate analysis on the data, which generally support 
the univariate results by showing that the factors identified with 
high (and low) risk combine in producing profiles of the same risk 
category [27] (results not shown). To determine the confidence 
intervals for the binomial test we use the Wilson score interval 
[28]. Note that in contrasting P(C|Xi) to P(C) we have chosen the 
weaker null hypothesis associated with the class C, because C 
contains the elements CXi, which are also in Xi. The stronger null 
hypothesis P(C|Xi), where Xi represents those values that are the 
complement of Xi, would exclude the part of C made up by 
participants who also are in Xi. As NCXi << NC the difference 
between using C and CXi is negligible. We have checked 
explicitly with both null hypotheses and the set of significant 
factors remains the same. The identification of those factors Xi 
that are most correlated with ILI incidence allows us to establish a 
risk profile for any person for whom some or all of the same data 
is available. Consequently, new participants now receive a 
preliminary risk assessment that is based on our analyses of the 
initial part of the data upon registration. 

 

3 RESULTS 

In Tables 1 and 2 we list the most significant risk factors: in terms 
of increased (Table 1), or of reduced (Table 2) risk of presenting 
ILI symptoms. The traits listed are those for which ε(C|Xi) 
corresponds to the 95% confidence level using the Wilson 
intervals. Note that all potential risk factors were evaluated, but 
only those that exhibited statistically significant correlation with 
ILI incidence (28 out of 171, 16.37%) are displayed. As 
mentioned, we also calculated ε for all two-variable combinations, 
but did not find any conclusions that were qualitatively different 
from those of the univariate analysis. 

 

Trait P(C|X) Upper 

95% CI 

Lower 5% 

CI 
𝜀 OR 

More than five colds 
per year 

33.20% 25.60% 15.52% 5.08 2.06 

Belongs to a risk 
group 

25.51% 22.37% 17.99% 4.85 1.54 

2-5 colds per year 
24.52% 22.02% 18.29% 4.66 1.53 

Chronic respiratory 
29.21% 24.27% 16.47% 4.57 1.73 

disease  

“Other” chronic 
disease* 

29.05% 28.40% 13.74% 4.41 1.71 

Treats health issues 
with herbal/home 
remedies 

24.44% 22.49% 17.88% 3.69 1.40 

Transport: bus 
23.12% 21.88% 18.42% 3.43 1.38 

Transport: foot 
24.63% 22.87% 17.57% 3.35 1.38 

Contact with 
“other” domestic or 
farm animals  

25.78% 23.78% 16.85% 3.21 1.44 

Age range (25,30]  
24.65% 23.05% 17.43% 3.17 1.37 

Contact with birds  
24.73% 23.15% 17.34% 3.12 1.38 

Uses homeopathy  
25.17% 23.57% 17.01% 3.04 1.40 

Does not use 
medical services  

27.60% 25.49% 15.59% 2.96 1.56 

Female  
22.23% 21.63% 18.63% 2.8 1.36 

Marital status: 
single  

21.95% 21.80% 18.48% 2.2 1.24 

Contact with cats  
22.43% 22.38% 18.51% 2.09 1.21 

 

(* excludes diabetes, respiratory and heart conditions) 

Table 1. Most significant risk factors for ILI symptoms 

In Table 1 we can observe a natural grouping of the most 
significant risk factors: (i) a group of high susceptibility factors, 
shown in yellow, corresponding to those who have a higher 
disease burden in general, either in terms of colds or in terms of 
chronic diseases, and those who reported belonging to a risk 
group; (ii) a group of factors, in blue, corresponding to the type 
of treatment that participants seek, indicating in this case a 
tendency to self-medicate or to seek non-standard alternatives; 
(iii) a group of factors, in magenta, corresponding to frequent 
contact with animals; (iv) a group of factors, in green, 
corresponding to the type and number of transport that the 
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participant uses; and (v) a group of demographic factors, in 
white: age, gender and marital status. The same color code is 
used in other tables.  

 

Trait P(C|X) Upper 

95% CI 

Lower 5% 

CI 
𝜀 OR 

Does not use herbal 
or home remedies 

18..02% 22.14% 18.19% -2.05 0.71 

Does not have 
contact with dogs 

18.08% 21.41% 18.83% -2.23 0.81 

Occupation: 
Industrial 

12.72% 21.91% 18.38% -2.42 0.57 

Age range (60,65] 
12.12% 26.68% 14.80% -2.55 0.54 

 

Male 
17.64% 21.87% 18.42% -2.78 0.76 

Does not belong to 
a risk group 

18.15% 21.43% 18.81% -2.90 0.65 

Does not use bus 
17.87 21.61% 18.65% -2.93 0.72 

Does not have 
contact with 
animals 

16.54% 22.44% 17.93% -3.09 0.73 

Less than two colds 
per year 

16.48% 21.64% 18.63% -4.71 0.60 

 

Table 2. Most significant factors for low 
frequency presentation of ILI symptoms. 

 

In Table 2 we see that participants who rarely present ILI 
symptoms belong, as might be expected, to classes that are 
generally complementary to those of the high-risk group. The 
reduced risk age group 60-65 is, in fact, consistent with the 
pattern observed elsewhere [29,30], as is the higher attack rate of 
H1N1 among younger age groups [29, 31]. It has been explained 
by preexisting immunity to a related strain among the older age 
groups, which would have been exposed at the time in which it 
circulated. Since our interest is to understand what these results 
can tell us from an epidemiological point of view, we proceed to 
make some concrete inferences and hypotheses that further work 
could validate.  

 

3 DISCUSSION 

A non-infected individual can only become infected through 
contact with influenza virions, something that depends on the 
individual's contact network. For the contact to result in infection, 
the virus must then reach the tissues or organs by which it can 
enter the host. Thus, contagion is also linked to personal and 
environmental hygiene. Lastly, the actual outcome of an infection, 
whether it will result in the manifestation of certain symptoms, is 
often linked with individual susceptibility. Susceptibility can refer 
to ease in acquiring infection or in developing disease; here, we 
will concentrate on the latter, which is reflected in the symptoms 
recorded in our data. In light of the information available in 
Reporta, we propose a taxonomy of the factors associated to risk 
of presenting ILI symptoms by linking these traits, when possible, 
to: (a) contact network, and (b) susceptibility of an individual. 

The variables deemed to serve as proxies for distinct risks of 
contact are: age (since it is linked to a social context, e.g., 
attending school, retirement), occupation (someone who works at 
home is less likely to have a large network of contacts than 
someone who works in customer service), type and number of 
transports used, household size, and being in frequent contact with 
various animals (these may be thought of as fomites or vehicles 
for disease which effectively extend the contact network). 

Those variables used as proxies for differential susceptibility are: 
age, occupation, number of colds per year (as recorded by the 
participant in the initial questionnaire), whether vaccinated against 
seasonal flu and why, number of hours devoted to physical 
exercise per week, preexisting chronic conditions, belonging to a 
risk group, and whether the respondent is a smoker. We also could 
potentially classify frequent contact with animals as a 
susceptibility factor, given its potential association to allergic 
responses.  

Markers for differential susceptibility are reported directly by the 
participants, who indicate how many colds per year they tend to 
present (we classify those participants who claim to have more 
than five colds per year as highly susceptible), whether they 
belong to a risk group, and whether they have any chronic 
conditions. All of these traits were linked to high ε values, as 
shown in Table 1.  

The results there also suggest that frequent contact with animals 
might carry enhanced risk of infection. We hypothesize that pets 
may effectively extend the contact network, serving as mobile 
fomites. Handling or petting may deposit pathogens on the 
animal, which then pass on, on the fur, to other members of the 
household. Personal communication with veterinarians provides 
two pieces of evidence in support of this hypothesis: First, 
collateral results in experimental studies report findings of 
causative agents (Staphylococcus) of human respiratory diseases 
in animal fur (Escorcia-Martínez, M., personal communication). 
Second, research on the source of a viral infection in animals has 
demonstrated that arthropods may mechanically carry the virus 
and have the potential to transmit it to other hosts [32, 33]. If this 
hypothesis were correct, one would expect that, all else being 
equal, having contact with a greater number of animal types 
should lead to an enhanced risk of presenting ILI symptoms. We 
tested this hypothesis with the results seen in Table 3, which 
clearly confirm the hypothesis. 
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Contact with 
number of animal 
types 

P(C|X) Upper 95% Lower 
95% 

𝜀 

0 16.54% 18.73% 14.56% 0 

1 19.77% 18.13% 15.06% 4.12 

2 21.96% 19.01% 14.33% 4.54 

3 or more 27.12% 20.32% 13.34% 5.94 

 

Table 3: Risk of presenting ILI symptoms associated to the 
number of animal types with which participants are in frequent 
contact. This risk is calculated in contrast to the frequency of ILI 
symptoms among participants who do not have frequent contact 
with animals of any kind. Because of the different point of 
contrast of this analysis, the results below are not part of those 
reported in Table 1. The columns of this table use the same data as 
those of Table 1. 

Similarly, one might imagine that people who use a greater 
number of transport types are more likely to have a larger contact 
network than those who only use one. Our data support this idea, 
as risk values do indeed increase monotonically with the number 
of transport types used as seen in Table 1. Interestingly, 
contrasting results have appeared in the literature related to the 
correlation between transport and incidence of ILI. In [34] for 
instance, it was shown that there was no significant correlation 
between ILI and public transport usage for crowd-sourced data 
from the Netherlands, Belgium and Portugal. On the other hand, 
in [35] it was shown that there was a correlation between bus/tram 
usage and incidence of acute respiratory infection. Notably, in 
[35], however, the correlation was found between bus/tram usage 
within 5 days of symptom onset as opposed to the typical 
frequency of bus/tram usage. 

4 CONCLUSIONS 

A number of studies have shown that crowd-sourced data can 
mirror the start, peak and decline of ILI incidence in the general 
population, and have exhibited their potential for estimating 
underreporting and improving various parameter estimates [21 - 
25]. They have thus been validated as a method of 
epidemiological data collection that provides novel, useful 
information. 

The present study exploits a novel data set that contains both 
epidemiological data and a wealth of sociodemographic and 
lifestyle details to understand what risk factors differentiate 
individuals in terms of their probability of presenting ILI 
symptoms. The approach reveals interesting correlations between 
ILI presence and potential risk factors that may then be interpreted 
in the light of epidemiological and biological knowledge.  

Some of our findings, such as the association between the number 
of transport types typically used and increasing risk of presenting 

ILI symptoms, would tend to confirm that high rates of mixing 
generally increase the likelihood of contracting infections [36]. 
On the other hand, the similar link of said risk to frequent contact 
with animals brings attention to a lesser known factor, and raises 
the question of what mechanism lies behind this connection. We 
hypothesize that contact with animals may be a way in which the 
effective contact network is extended and infection risk enhanced, 
as a result of animals acting as mobile fomites that have close 
contact with household members. Alternatively, animal hair or 
feathers may cause irritation of the airways that then are more 
prone to pathogen colonization. We found that the number of 
animal types with which an individual is in frequent contact is 
positively associated to the likelihood of presenting ILI 
symptoms. Without being conclusive, this would favor the 
hypothesis that animals extend the contact network.  

Either way, it is clear that the integrated, wide-ranging 
information provided by crowd-sourced data may yield new links 
and insights into old phenomena. In turn, these new hypotheses 
may be investigated further. The observations documented in this 
paper may also be complemented and contrasted against other 
studies on similar data. In the same way in which extensive data 
sets of disease incidence have revealed the relative importance of 
various demographic factors [37, 38] and the role of particular 
pathogen life history traits on disease dynamics [39], crowd-
sourcing can yield large, rich data banks that already are 
considerably easier to process and analyze than printed records. 
We believe that data-mining is worth pursuing beyond mere 
descriptions, and have proposed a preliminary taxonomy of 
demographic and lifestyle traits that may serve as an intuitive 
interpretive framework linked to classical notions of 
epidemiology. 
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